Refine Your Search

Topic

Author

Search Results

Technical Paper

Design and Simulation of Lithium-Ion Battery Thermal Management System for Mild Hybrid Vehicle Application

2015-04-14
2015-01-1230
It is well known that thermal management is a key factor in design and performance analysis of Lithium-ion (Li-ion) battery, which is widely adopted for hybrid and electric vehicles. In this paper, an air cooled battery thermal management system design has been proposed and analyzed for mild hybrid vehicle application. Computational Fluid Dynamics (CFD) analysis was performed using CD-adapco's STAR-CCM+ solver and Battery Simulation Module (BMS) application to predict the temperature distribution within a module comprised of twelve 40Ah Superior Lithium Polymer Battery (SLPB) cells connected in series. The cells are cooled by air through aluminum cooling plate sandwiched in-between every pair of cells. The cooling plate has extended the cooling surface area exposed to cooling air flow. Cell level electrical and thermal simulation results were validated against experimental measurements.
Journal Article

Developing a Utility Factor for Battery Electric Vehicles

2013-04-08
2013-01-1474
As new advanced-technology vehicles are becoming more mainstream, analysts are studying their potential impact on petroleum use, carbon emissions, and smog emissions. Determining the potential impacts of widespread adoption requires testing and careful analysis. PHEVs possess unique operational characteristics that require evaluation in terms of actual in-use driving habits. SAE J2841, “Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data,” published by SAE in 2009 with a revision in 2010, is a guide to using DOT's National Household Travel Survey (NHTS) data to estimate the relative split between driving in charge-depleting (CD) mode and charge-sustaining (CS) mode for a particular PHEV with a given CD range. Without this method, direct comparisons of the merits of various vehicle designs (e.g., efficiency and battery size) cannot be made among PHEVs, or between PHEVs and other technologies.
Technical Paper

Development and Implementation of SAE DC Charging Digital Communication for Plug-in Electric Vehicle DC Charging

2013-04-08
2013-01-1188
This paper outlines the development and progress of implementing the SAE J2931, J2847/2 and J1772 communication standards to accomplish off-board DC charging. Communication between the off-board DC Electric Vehicle Supply Equipment (EVSE) and Plug-in Electric Vehicle (PEV) occurs on the pilot wire of the SAE J1772 connector via HomePlug Green PHY power line communication (PLC). An Electric Vehicle Communication Controller (EVCC) was developed to interface with the PEV's Battery Energy Control Module (BECM). A Supply Equipment Communication Controller (SECC) was also developed to interface with the DC EVSE's Power Control Module (PCM). Firmware was developed to implement the SAE J2931/1 communication stack, which is harmonized with the ISO/IEC DIS 15118-2 and DIN 70121 standards for DC charging communication.
Technical Paper

Development and Validation of the Ford Focus Battery Electric Vehicle Model

2014-04-01
2014-01-1809
This paper presents the vehicle model development and validation process for the Ford Focus battery electric vehicles (BEVs) using Autonomie and test results from Advanced Powertrain Research Facility in Argonne National Laboratory. The parameters or characteristic values for the important components such as the electric machine and battery pack system are estimated through analyzing the test data of the multi cycle test (MCT) procedure under the standard ambient condition. A novel process was used to import vehicle test data into Autonomie. Through this process, a complete vehicle model of the Ford Focus BEV is developed and validated under ambient temperature for different drive cycles (UDDS, HWFET, US06 and Steady-State). The simulation results of the developed vehicle model show coincident results with the test data within 0.5% ∼ 4% discrepancies for electrical consumption.
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Efficient Thermal Modeling and Integrated Control Strategy of Powertrain for a Parallel Hybrid EcoCAR2 Competition Vehicle

2014-04-01
2014-01-1927
Hybrid electric vehicle (HEV) is one of the most highly pursued technologies for improving energy efficiency while reducing harmful emissions. Thermal modeling and control play an ever increasing role with HEV design and development for achieving the objective of improving efficiency, and as a result of additional thermal loading from electric powertrain components such as electric motor, motor controller and battery pack. Furthermore, the inherent dual powertrains require the design and analysis of not only the optimal operating temperatures but also control and energy management strategies to optimize the dynamic interactions among various components. This paper presents a complete development process and simulation results for an efficient modeling approach with integrated control strategy for the thermal management of plug-in HEV in parallel-through-the road (PTTR) architecture using a flexible-fuel engine running E85 and a battery pack as the energy storage system (ESS).
Technical Paper

Evaluation of Cold Temperature Performance of the JCS-VL41M PHEV Battery using Battery HIL

2008-04-14
2008-01-1333
Plug-in hybrid electric vehicles (PHEVs) have been identified as an effective technology to displace petroleum by drawing significant off- board energy from the electrical grid. A plug-in vehicle uses a large capacity battery to operate in an electric-only or a blended mode of operation over a large SOC window (60-80% of total operational SOC) for maximum petroleum displacement. Some advanced chemistry batteries have show that low ambient (battery) temperature has a significant impact on the performance of a PHEV battery. This paper quantifies the impact of low ambient (battery) temperature on a PHEV electric range using Hardware-in-the-Loop (HIL) methods. Combining ultra capacitors with batteries could provide a solution to overcome PHEV battery performance limitations at low temperatures.
Journal Article

Experimental Assessments of Parallel Hybrid Medium-Duty Truck

2014-05-20
2014-01-9021
Fuel consumption reduction on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The Crankshaft-Integrated-Starter-Generator (C-ISG) is one of the parallel hybrid propulsions to improve the fuel economy. The C-ISG configuration is attractive because one electric machine can be used to propel the vehicle, to start the engine, and to be function as a generator. The C-ISG has been implemented in one M1083A1 5-ton tactical cargo truck. This paper presents the experimental assessments of the C-ISG hybrid truck characteristics. The experimental assessments include all electric range for on- and off-road mission cycles and fuel consumption for the high voltage battery charging. Stationary tests related to the charging profile of the battery pack and the silent watch time duration is also conducted.
Technical Paper

Government-Industry Partnerships and Environmental and Safety Solutions

2000-04-02
2000-01-1593
The Advanced Battery Readiness Ad Hoc Working Group, a government- industry forum sponsored by the United States Department of Energy, is charged with assessing environmental and safety issues associated with advanced batteries for electric and hybrid electric vehicles. Electric and hybrid electric vehicles require sophisticated advanced battery storage systems. Frequently, toxic, reactive, and flammable substances are used in the energy storage systems. Often, the substances have safety, recycling, and shipping implications with respect to U.S. Environmental Protection Agency and Department of Transportation regulations. To facilitate commercialization, reg-ulations must either be modified or newly developed. Government-industry coordination has expedited needed regulatory changes, and promoted other partnerships to achieve environmental and safety solutions.
Technical Paper

HIL Demonstration of Energy Management Strategy for Real World Extreme Fast Charging Stations with Local Battery Energy Storage Systems

2023-04-11
2023-01-0701
Extreme Fast Charging (XFC) infrastructure is crucial for an increase in electric vehicle (EV) adoption. However, an unmanaged implementation may lead to negative grid impacts and huge power costs. This paper presents an optimal energy management strategy to utilize grid-connected Energy Storage Systems (ESS) integrated with XFC stations to mitigate these grid impacts and peak demand charges. To achieve this goal, an algorithm that controls the charge and discharge of ESS based on an optimal power threshold is developed. The optimal power threshold is determined to carry out maximum peak shaving for given battery size and SOC constraints.
Technical Paper

Impact of Drive Cycles on PHEV Component Requirements

2008-04-14
2008-01-1337
Plug-in Hybrid Electric Vehicles (PHEVs) offer the ability to significantly reduce petroleum consumptions. Argonne National Laboratory (ANL), working with the FreedomCAR and Fuels Partnership, participated in the definition of the battery requirements for PHEVs. Previous studies have demonstrated the impact of vehicle characteristics such as vehicle class, mass or electrical accessories. However, outstanding questions remain regarding the impact of drive cycles on the requirements. In this paper, we will first evaluate the consequences of sizing the electrical machine and the battery powers to follow the Urban Dynamometer Driving Schedule (UDDS) to satisfy CARB requirements, including how many other driving cycles can be followed in Electric Vehicle (EV) mode. Then, we will study the impact of sizing the electrical components on other driving cycles.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Journal Article

Impact of Energy Management on the NPV Gasoline Savings of PHEVs

2010-04-12
2010-01-1236
This paper evaluates the impact of energy management strategy on the cost benefits of a plug-in hybrid electric vehicle (PHEV) by taking into account the impact of PHEV energy management on battery life and petroleum displacement over the life of the vehicle. Using Battery in the Loop (BIL), a real battery is subjected to transient power demands by a virtual vehicle. The vehicle energy management strategy is varied, resulting in different battery utilization scenarios. Battery life, which varies with battery utilization, is estimated for the different energy management scenarios. The same representative drive cycle is used over the different energy management strategies to isolate the impact of energy management on battery utilization. PHEV gasoline savings, in comparison to a charge sustaining hybrid, are calculated for each of the energy management strategies, for a fixed distance of 40 miles.
Technical Paper

Impact of Real-World Drive Cycles on PHEV Battery Requirements

2009-04-20
2009-01-1383
Plug-in hybrid electric vehicles (PHEVs) have the ability to significantly reduce petroleum consumption. Argonne National Laboratory (Argonne), working with the FreedomCAR and Fuels Partnership, helped define the battery requirements for PHEVs. Previous studies demonstrated the impact of the vehicle's characteristics, such as its class, mass, or electrical accessories, on the requirements. However, questions on the impact of drive cycles remain outstanding. In this paper, we evaluate the consequences of sizing the electrical machine and the battery to follow standard drive cycles, such as the urban dynamometer driving schedule (UDDS), as well as real-world drive cycles in electric vehicle (EV) mode. The requirements are defined for several driving conditions (e.g., urban, highway) and types of driving behavior (e.g., smooth, aggressive).
Technical Paper

Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle

2010-04-12
2010-01-0816
A multimode transmission combines several power-split modes and possibly several fixed gear modes, thanks to complex arrangements of planetary gearsets, clutches and electric motors. Coupled to a battery, it can be used in a highly flexible hybrid configuration, which is especially practical for larger cars. The Chevrolet Tahoe Hybrid is the first light-duty vehicle featuring such a system. This paper introduces the use of a high-level vehicle controller based on instantaneous optimization to select the most appropriate mode for minimizing fuel consumption under a broad range of vehicle operating conditions. The control uses partial optimization: the engine ON/OFF and the battery power demand regulating the battery state-of-charge are decided by a rule-based logic; the transmission mode as well as the operating points are chosen by an instantaneous optimization module that aims at minimizing the fuel consumption at each time step.
Technical Paper

Intelligent Auxiliary Battery Control - A Connected Approach

2021-09-21
2021-01-1248
As vehicles are getting electrified and more intelligent, the energy consumption of the auxiliary system increases rapidly. The auxiliary battery acts as the backbone of the system to support the proper operation of the vehicle. It is important to ensure the auxiliary battery has enough energy to meet the basic loads regardless the vehicle is in park or running. However, the existing methods only focus on auxiliary energy management when the vehicle is in a dynamic event. To fulfill the gap, we propose an intelligent strategy that detects the low state of charge (SOC) condition, temporarily turns down the auxiliary loads based on their priorities and charges the auxiliary battery at the maximum efficiency of the auxiliary power unit. In addition, the proposed strategy allows the vehicle to get the park duration update and make intelligent decisions on charging the auxiliary battery.
Technical Paper

Interdependence of System Control and Component Sizing for a Hydrogen-fueled Hybrid Vehicle

2005-09-07
2005-01-3457
Argonne National Laboratory (ANL) researchers have embarked on an ambitious program to quantitatively demonstrate the potential of hydrogen as a fuel for internal combustion engines (ICEs) in hybrid-electric vehicle applications. In this initiative, ANL researchers need to investigate different hybrid configurations, different levels of hybridization, and different control strategies to evaluate their impacts on the potential of hydrogen ICEs in a hybrid system. Because of limitations in the choice of motor and battery hardware, a common practice is to fix the size of the battery and motor, depending on the hybrid configuration (starter/alternator, mild hybrid, or full hybrid) and to tune the system control for the above-available electrical power/energy. ANL has developed a unique, flexible, Hardware-In-the-Loop (HIL) platform for advanced powertrain technology evaluation: The Mobile Advanced Technology Testbed (MATT).
Technical Paper

Life-Cycle Costs of Lithium-Ion Vehicle Batteries

2000-04-26
2000-01-1483
One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is lithium ion. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from being able to meet the cost goals. The Center for Transportation Research at Argonne National Laboratory (Argonne) undertook a project for the United States Department of Energy (USDOE) to estimate costs of lithium ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, or development of new supplies.
Technical Paper

Lithium-Ion Battery Cell Modeling with Experiments for Battery Pack Design

2020-04-14
2020-01-1185
Lithium-ion polymer battery has been widely used for vehicle onboard electric energy storage ranging from 12V SLI (Starting, Lighting, and Ignition), 48V mild hybrid electric, to 300V battery electric vehicle. Formulation on cell parameters acquired from minimum numbers of experiments, the modeling and simulation could be an effective approach in predicting battery performance, thermal effectiveness, and degradation. This paper describes the modeling, simulation, and validation of Lithium-Nickel-Manganese-Cobalt-Oxide (LiNiMnCoO2) based cell with 3.6V nominal voltage and 20Ah capacity. Constant current 20A, 40A, 60A, and 80A discharge tests are conducted in the computer-controlled cycler and temperature chamber. Discharging voltage curves and cell surface temperature distributions are recorded in each discharging test. A three-dimensional cell model is constructed in the COMSOL multi-physics platform based on the cell parameters.
Technical Paper

Long Term Impact of Vehicle Electrification on Vehicle Weight and Cost Breakdown

2017-03-28
2017-01-1174
Today’s value proposition of plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) remain expensive. While the cost of lithium batteries has significantly decreased over the past few years, more improvement is necessary for PHEV and BEV to penetrate the mass market. However, the technology and cost improvements of the primary components used in electrified vehicles such as batteries, electric machines and power electronics have far exceeded the improvements in the main components used in conventional vehicles and this trend is expected to continue for the foreseeable future. Today’s weight and cost structures of electrified vehicles differ substantially from that of conventional vehicles but that difference will shrink over time. This paper highlights how the weight and cost structures, both in absolute terms and in terms of split between glider and powertrain, converge over time.
X